Information-theoretic hypothesis generation of relative cue weighting for the voicing contrast Annika Heuser & Jianjing Kuang University of Pennsylvania

Problem

- How effective cues are for differentiating a phonological contrast depends on context
- How do kids learn to attend to the cues that are most effective for the context?
- \rightarrow Need to conduct perceptual experiments to figure this out

Method

 Feature importances from decision trees as a proxy for perceptual cue weights may help inform experimental designs

 → Use Standard American English (SAE) voicing as a case study to verify this
 I.e. checked that feature importances from TIMIT [1] data reflected well-known differences in voicing realization between onsets/codas, and stops/fricatives (e.g. [2-4])

Results – contextual variation

Acoustic features

cl_dur = closure duration
partial_voice = proportion of voicing during oral closure
trans_f0/f1/etc = transition f0/formants; average of first/last 5%
of adjacent vowel
adj_vow_f0/f1/etc = average across vowel

manner = stop or fricative

Results

 Accuracy of decision trees from which we calculated feature importances consistently ~85%

Figure 1 (above): From classifying all voiced/voiceless consonants togetherExpected that partial voicing and duration would be highly ranked

Contextual Variation Figure 2 (top right): Feature importances from only classifying fricative or stops in word onsets (2a) or codas (2b), respectively • Many expected findings, e.g. VOT (stop durations in onsets) is most important

Feature importances for complex consonant cluster and non-cluster subtrees

separately from lone
consonants
Less studied so this provides new insight!

Contributions and Conclusions

Validated that decision tree feature importances make accurate cue weighting predictions for SAE voicing
Decision trees = low resource and high explainability
Hypotheses from predicted relative cue weightings can inform future experiments aiming to understand the perception of phonological contrasts in different contexts

References

[1] J. S. Garofolo, "Timit acoustic phonetic continuous speech corpus," Linguistic Data Consortium, 1993, 1993 [2] L. Davidson, "Variability in the implementation of voicing in American English obstruents," Journal of Phonetics, vol. 54, pp. 35–50, 2016. [3] L. Lisker, "Closure duration and the intervocalic voiced-voiceless distinction in English," Language, vol. 33, no. 1, pp. 42–49, 1957. [4] K. N. Stevens and D. H. Klatt, "Role of formant transitions in the voiced-voiceless distinction for stops," The Journal of the Acoustical Society of America, vol. 55, no. 3, pp. 653–659, 1974.