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Abstract
To learn the voicing contrast, children must identify which

of the available perceptual cues are helpful in different contexts.
Using Standard American English (SAE) as a case study, we
generated hypotheses of which cues are the most informative for
different contexts, such as onsets vs. codas. More specifically,
we classified SAE obstruents as voiced vs. voiceless using deci-
sion trees trained and tested on TIMIT. We validated the feature
importances of different contexts against the findings of previ-
ous perceptual studies and we gleaned more specific hypotheses
to help design future experiments on children’s acquisition of
the voicing contrast.
Index Terms: phonemic perception, relative cue weighting, ac-
quisition, voicing contrast

1. Introduction
Adults easily perceive the phonological contrasts of their native
language, despite the multidimensional nature of the phonetic
signal to phonological contrast mapping problem. This multi-
dimensionality in part stems from many perceptual cues being
available for phonological contrasts. For example, the voicing
contrast for Standard American English (SAE) obstruents in-
volves at least 16 acoustic cues [1]. Another major contributor
to the multi-dimensionality is that for the same phonological
contrast, cue weightings might change depending on the con-
text. Continuing with SAE voicing examples: SAE voiced stops
are often truly voiced (with pre-voicing) in intervocalic posi-
tions, but tend to be voiceless word initially [2]. Therefore, to
fully acquire a phonological contrast, children need to acquire
all its contextual variation. This presents a gap in the acquisi-
tion literature because the contextual variation is not typically
studied. Accordingly, we must investigate how children learn a
single phonological category from various phonetic realizations
in different contexts. As a first step, we computationally model
how contextually varied cue weightings can be learned from the
speech signal.

By the same philosophy, Rhee et al. [3] computationally
modeled the acquisition of cue weighting for lexical pitch per-
ception. To weight F0 and spectral cues, they used three clas-
sification algorithms: linear discriminant analysis, support vec-
tor machines, and random forests. As opposed to determining
the cue weights at just one time point, they tracked them over
time with a corpus consisting of semi-spontaneous speech from
children and adults. This study demonstrated a developmental
curve of cue integration for language acquisition. Children ac-
quire the primary cue at a younger age, and children older than
6 years old learn to utilize more phonetic cues to distinguish the
contrast more efficiently.

In this paper, we use decision trees, which are closely re-

lated to the random forests used by Rhee et al. [3], in that a
random forest combines many decision trees. While random
forests tend to perform better, in terms of both accuracy and
generalization, decision trees are more interpretable [4]. Be-
cause our goal is to make predictions that we can test via per-
ception experiments, we opted for the decision tree algorithm.
Building decision trees also requires fewer computational re-
sources than random forests. If we are able to achieve suffi-
cient classification performance and the cues picked out to be
the most informative are supported by the literature, then deci-
sion trees are the most efficient tool for our purposes.

We focus on the SAE voicing contrast as a case study to
validate this method. We investigate how the cue weights cor-
responding to adult voicing perception change across different
contexts, such as syllable position (onset vs. coda) and for dif-
ferent manners of articulation (stops vs. fricatives). [5, 6, 7]
provide evidence that these contexts impact the phonetic real-
ization of the contrast. We chose this case study especially be-
cause of the substantial literature that we have only cited a small
subset of in this section.

2. Methods
2.1. Corpus and acoustic features

How effective any classification algorithm can be depends on
the data quality and features it has to work with. Our data
is from TIMIT [8], a corpus of sentences read by 630 SAE
speakers. We consider this data high-quality because the au-
dio has minimal background noise and the TextGrids are hand-
corrected. We only chose features that were available for
all segments/contexts because we cannot effectively compare
context-specific feature rankings to overall feature rankings if
the context-specific rankings include additional features.

We extracted consonant duration, which is tied to the dis-
tinction of voiced vs voiceless fricatives, and voiced vs voice-
less postvocalic consonants [9]. In the case of all word-initial
and some word-final stops, the consonant duration is just the
voiced onset time (VOT), because the closure duration is sep-
arately segmented and labeled in the TIMIT TextGrids. The
consonant duration of stops followed by other consonants (e.g.
the ”k” in ”dark suit”) does not correspond to VOT in TIMIT.
VOT is well-known as an effective cue for initial stop voicing
(e.g. [10, 11]); however, unlike the more general feature, con-
sonant duration, it is often missing in some contexts (e.g. sylla-
ble coda position which sometimes only has closure duration).
To effectively capture pre-voicing, we also extract the propor-
tion of voicing during oral closure (partial voicing hereafter).
To calculate partial voicing, we detect periodic pulses during
the oral closure interval and calculate the proportion of periodic
frames. It is important to note that our Praat script returns the
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inverse value, i.e. the proportion that is not voiced, but we still
refer to it is as partial voicing. While we would only be able to
measure VOT values for some, but not all stops, we can extract
partial voicing values for consonants in every word position.
Partial voicing may also be a more informative value because
the amount of voicing realization in English depends on sev-
eral factors, such as word position, stress patterns, and adjacent
phonemes [12]. Another voicing cue only available for stops
is closure duration [13]. To utilize the closure durations in the
TIMIT TextGrids, we simply record values of 0 for non-stop
obstruents, as well as for stops that are sentence initial, where
the closure duration is impossible to detect.

We also extract f0 and formant transitions (at 5% vowel du-
ration for onsets and 95% for codas), and the formant averages,
of the adjacent vowels, and the vowel durations themselves. On-
set f0 differs significantly between voiced and voiceless stops in
English [14], so we expect this to be an informative cue at least
for one of our contexts of interest. [7] and [15] provided evi-
dence that formant transitions of initial stops covary with VOT
and impact the perception of the voicing contrast in English.
Finally, vowel duration is important to the perception of voiced
and voiceless coda segments [16].

2.2. Data Pre-processing

We extracted each segment’s phonemic label, start and end
times based on the TextGrid, duration, partial voicing (max pe-
riod factor= 1.3, max amplitude factor= 1.6, all other parameters
are Praat Pitch defaults), average f0 (male range= 75-250Hz,
female range= 100-300Hz, time step= 0.001s, otherwise all de-
faults), average F1-F3 (time step = 0.01s, max number of for-
mants = 5, formant ceiling = 5500 Hz, window length = 0.025s,
pre-emphasis from = 50 Hz), and f0 and F1-F3 at 5%, 50%, and
95% duration using Praat.

Next, we assigned syllable position values based on
whether a segment aligned with the beginning or end of
TIMIT’s TextGrid word tier. In other words, we only labeled
segments at the beginning or end of words, as onsets and codas,
respectively. Not just the most word-initial and word-final con-
sonants, but all consonants part of a complex consonant clus-
ter at the beginning or end of a word, were assigned a syllable
position value. Word-medial segments were all discarded be-
cause of evidence that word edges contain enough information
for “phonological bootstrapping” of higher level categories, like
lexical category [17, 18]. We also discarded words that did not
contain a vowel, even if they did contain syllabic consonants,
because we wanted all the consonants to have comparable ad-
jacent vowel data. For consonants in the onset, we found the
nearest vowel to the right, and appended the f0 and F1-F3 at
5% vowel duration. For consonants in the coda, we found the
nearest vowel to the left, and appended the f0 and F1-F3 at 95%
vowel duration. Regardless of whether a consonant has an on-
set or coda label, we appended the average f0 and F1-F3 of the
nearest vowel to the right or left, respectively. We also discarded
consonants that had any adjacent vowel values that were unde-
fined. Finally, we excluded all segments that were not part of
a voiced/voiceless stop or fricative pair. This ultimately left us
with 34,043 data points.

In addition to the onset vs. coda label, we assign conso-
nants a boolean value corresponding to whether the consonant
is part of a complex consonant cluster. We do not differentiate
between a consonant at the beginning, middle, or end of a com-
plex consonant cluster–they are all assigned the same complex
consonant cluster boolean value, as well as the same adjacent

vowel values. Aside from these categorical values, we z-score
normalized all features across each speaker. Normalizing the
data is a standard pre-processing step for classification algo-
rithms. However, our normalization across speakers is also jus-
tified by evidence that human listeners perform online speaker
normalization (e.g. [19, 20, 21]). In our final dataset, 48.96% of
consonants are voiced and 51.04% are unvoiced. This data bal-
ance is likely a byproduct of the fact that TIMIT was designed
as a phonetically balanced speech corpus, which is another rea-
son that is well-suited for this study. It is fortunate that the data
is still so balanced after pre-processing, seeing as imbalanced
data can pose a problem for classification algorithms [22].

2.3. Decision Tree Analysis

We built every decision tree on 90% of the data, in order to hold
out 10% for testing. Using sklearn’s DecisionTreeClassifier, we
could choose between more than one split criterion, and tried
both Gini impurity and Shannon entropy. Given that both cri-
teria determine how homogeneous the resulting two groups are,
with respect to the target classification category, we did not ex-
pect them to make a significant difference in testing accuracy
or to change the rankings based on feature importance. We ver-
ify this in section 3. We also explored different maximum tree
depth constraints. When unconstrained by such a parameter, the
algorithm will continue splitting the training data until it has
achieved 100% accuracy. This is often an overfit of the training
data, resulting in sub-optimal performance on the held-out test
data. We searched for the split criterion and depth that allowed
us to achieve the best test accuracy. We averaged the test ac-
curacies for each criterion/depth combination over 10 random
train-test data split iterations. Using the combination we found
to produce the best tree in terms of test accuracy, we extracted
the normalized total reduction of the split criterion for each fea-
ture (e.g. partial voicing, consonant duration, average adjacent
vowel f0, etc.). We recorded these values for each of 10 random
train-test splits and averaged across the individual features.

To model the contexts that result in different phonetic real-
izations of the voicing contrast, we built trees in which we man-
ually specified the first split to be based on one of our categor-
ical features, e.g. syllable position, manner of articulation, etc.
We use splitting on syllable position as our example to explain
how we manually set a feature for our first split. We first cre-
ated our 90-10% train-test split and then divided the training and
test data into two groups consisting of only onset data or only
coda data. We then run the same sklearn DecisionTreeClassifier
algorithm based on just the onset or just the coda data. The pre-
processed data is made up of 56.81% onset and 43.19% coda
consonants, 47.57% stop and 52.43% fricative consonants, and
34.75% consonants that are part of complex consonant clusters
and 65.25% that are not. This means that the syllable position
and manner of articulation initial splits are likely to be relatively
even, and the resulting subtrees will be built based roughly the
same amount of training data.

However, because the test data is not as likely to break into
even subgroups based on the categorical feature, we weighted
the accuracies of the two sub-trees based on the percentage of
the test data that they classify. To clarify this statement, we
again precede with the syllable position initial split example: If
2
3

of the test data was from an onset, then we would calculate the
onset decision tree’s accuracy from 2

3
of this data and the coda

decision tree’s accuracy from the other 1
3

. The test accuracies of
the onset and coda sub-trees would then be multiplied by 2

3
and

1
3

, respectively, and summed. While the test accuracy of the
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individual sub-trees is also interesting, we weight them to be
able to verify that they are about as accurate as decision trees in
which we did not specify the initial feature (or two). In contrast,
we are interested in how the rankings of the remaining features
differ between only onset data and only coda data, so we report
the raw feature importances of each sub-tree, without weighting
or otherwise aggregating them.

We can manually specify the second tree level in much the
same way that we specify the first. After setting the initial split
to be based on syllable position, for example, we can then set
the second to be based on manner of articulation. To do this,
we divide the onset and coda train and test groups into two fur-
ther groups, namely stops and fricatives. This results in eight
groups, half train and half test, from which we generate four
sub-trees: 1) onset-stop, 2) onset-fricative, 3) coda-stop, and 4)
coda-fricative. We weight the test accuracies of each sub-tree
and take the raw feature importances as before. We report the
results of implementing this very example in section 3.

3. Results
Figure 1 demonstrates that the split criterion (Gini impurity vs.
Shannon entropy) does not make a difference in the test accu-
racy, but the tree depth constraint does.

Figure 1: Decision trees with depths of about 10 have the best
test accuracy.

We searched more precisely between depths 6 and 15, and
found the optimal depth to be 10, resulting in an average test
accuracy of 85.02% with the Shannon entropy split criterion.
It is important to note that the best depth and criterion change
depending on the random seeds, meaning that neither is crucial
to the results so long as the depth is around 10. This is also
true when we manually specify the first feature or two. In fact,
we found the optimal depth of the subtrees from first splitting on
syllable position and then manner of articulation to be 7. Seeing
as there are two manually specified levels above the subtrees,
the total maximum depth is 9. The average test score weighted
across the four subtrees is 85.81%, which is very similar to that
of the optimal tree when we did not manually specify anything.

The criterion does not affect the feature rankings, as shown
in figure 2. Figure 2 also demonstrates that partial voicing (re-

Figure 2: The feature importance ranking does not change if we
use a different split criterion.

ferred to as partial voice in the figures) is consistently an
important cue for phonemic voicing classification, as we would
expect, seeing as it is a measure of phonetic voicing. The com-
plex consonant cluster boolean (complex cluster) is also
a high ranking feature, suggesting that it may split the data
into different contexts across which children learn separate cue
weightings. We therefore decided to determine the feature rank-
ings for solo consonants vs. consonants part of a complex con-
sonant cluster, and discuss them later in this section.

For the sake of validating the decision tree method as a
means of generating hypotheses of contextual variation of cue
weighting, we calculated the feature rankings for four contexts.
These contexts corresponded to each sub-tree resulting from
manually specifying the first two levels to 1) syllable position
and 2) manner of articulation. Many perceptual experiments
only correspond to one of these four contexts, making the sub-
tree feature rankings the best means of validation. Looking to
the onset sub-plot, we find consonant duration (referred to as
duration in all figures) to be by far the most important fea-
ture for both stops and fricatives. The consonant duration of an
onset stop in TIMIT is simply its VOT, which is a well-known
predictor of voicing in stops [23, 24]. For fricatives, consonant
duration significantly differs between voiced and voiceless on-
set fricatives [25]. We expect the overall consonant duration to
heavily correlate with frication duration which has been found
to significantly affect voiced/voiceless perception in adults [26].
It therefore makes sense that consonant duration is also the sec-
ond most important feature for coda fricatives.

Turning now to the coda subplot, we highlight that adja-
cent vowel duration (adj vow dur) is particularly important
for coda stops. Peterson & Lehiste [27] found that vowel dura-
tion before a voiced consonant was consistently longer for both
stops and plosives. However, while vowel duration may be a de-
cently predictive feature for fricative codas as well, consonant
duration outranks it. Also consistent with previous perception
studies, closure duration is a very weak cue for coda voicing
[28]. Altogether, the results presented in figure 3 are largely in
line with the findings from perceptual studies on the SAE voic-
ing contrast. Therefore, our model successfully simulated the
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Figure 3: The relative feature importances from first splitting on
syllable position and then on manner of articulation.

contextual variation of perceptual cue weighting for the voic-
ing contrast. Unlike typically well-controlled perception exper-
iments, which can only focus on a very limited set of cues (2-3
cues at most), we were able to test a more comprehensive set
of cues. Our model also generates a number of novel findings
and presents an opportunity for experimental verification. To
name a few here, we found that for both fricatives and stops,
partial voicing is consistently the most important cue for coda
voicing contrast, outranking the well-studied cues such as vowel
duration and closure duration. Formant transitions are more in-
formative for coda voicing than for onset voicing. It is also
interesting that fricatives and stops have similar cue weightings
across onsets and codas, suggesting that they may have the same
contextual effect on voicing.

We present additional novel findings based on figure 4. In-

Figure 4: The relative feature importances from splitting on the
complex consonant cluster boolean.

terestingly, adjacent vowel duration (adj vow dur) is much
stronger for consonants in complex consonant clusters than for
solo consonants. For solo consonants, the partial voicing and
consonant duration have roughly the same feature importance,
while consonant duration is much weaker for consonants in
complex consonant clusters. We might then hypothesize that
partial voicing and consonant duration, but neither alone, al-
lows for sufficient voicing perception of solo consonants, for
example. This could explain why children more quickly learn
to classify non-cluster segments [29] because they don’t need to
integrate as many cues. This can be proven or dismissed with a
well-designed perceptual experiment.

4. Discussion
Decision trees perform well enough on classifying the SAE
voicing contrast, based on the mean test accuracy of ∼85%
generally, and across all the contexts we tested. The features
they pick out as important for voicing classification are corrob-
orated by the literature. There are, of course, more contexts that
we could have investigated, like place of articulation, intervo-
calic, etc., in order to generate additional hypotheses that can
already be confirmed or denied by the literature. Nonetheless,
the feature rankings of the contexts we did investigate gave rise
to novel predictions on the well-studied SAE voicing contrast.

There are many opportunities for further research with this
approach, now that we have demonstrated that our decision
trees generate cue weightings consistent with human percep-
tion. For example, we could quantify the effects of adding or
subtracting features on the classification accuracy. If we only
provided the model with the top feature whose importances sum
to at least 0.5, for example, could we achieve comparable accu-
racy to using all the features? In future work, we will answer
this question and determine how many cues are necessary to
model human voicing perception in various contexts. Another
direction of future research involves generating hypotheses for
languages with different voicing contrasts, like Spanish, a true
voicing language [30]. Because building decision trees does not
require many computational resources, we can use this tool to
easily simulate human perception in a wide range of contexts
and across many languages.
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